代码中无padding和stride的具体设置信息,这种情况下怎么看padding和stride大小呢?
此代码是tensorflow利用CNN对MNIST进行分类的,来源是CSDN中某篇博文,暂时没找到链接,等找到了再贴上来。
我想计算卷积之后的Feature map维度,看了一下网上的公式,都是要padding和stride的,但是这个代码里面没写,百度无果,这种情况下,padding和stride是默认的嘛?要怎么看呢?
import os
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
from keras.datasets import mnist
class CNN(object):
def __init__(self):
model = models.Sequential()
# 第1层卷积,卷积核大小为3*3,32个,28*28为待训练图片的大小
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
# 第2层卷积,卷积核大小为3*3,64个
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 第3层卷积,卷积核大小为3*3,64个
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.summary()
self.model = model
class DataSource(object):
def __init__(self):
# mnist数据集存储的位置,如何不存在将自动下载
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# 6万张训练图片,1万张测试图片
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))
# 像素值映射到 0 - 1 之间
train_images, test_images = train_images / 255.0, test_images / 255.0
self.train_images, self.train_labels = train_images, train_labels
self.test_images, self.test_labels = test_images, test_labels
class Train:
def __init__(self):
self.cnn = CNN()
self.data = DataSource()
def train(self):
check_path = './ckpt/cp-{epoch:04d}.ckpt'
# period 每隔5epoch保存一次
save_model_cb=tf.keras.callbacks.ModelCheckpoint(check_path,save_weights_only=True, verbose=2, period=5)
self.cnn.model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
self.cnn.model.fit(self.data.train_images, self.data.train_labels, epochs=20, batch_size=128, callbacks=[save_model_cb])
test_loss, test_acc = self.cnn.model.evaluate(self.data.test_images, self.data.test_labels)
print("准确率: %.4f,共测试了%d张图片 " % (test_acc, len(self.data.test_labels)))
if __name__ == "__main__":
app = Train()
app.train()
推荐文章: