使用 OpenAI Finetune API 创建自己的微调模型

年后公司开始考虑是否使用 OpenAI 去解决一些业务。网上结合业务使用 AI 的资料并不是很多。虽然最后并未落地,还是要记录一下相关的探索过程。

安装 cli 客户端

pip install --upgrade openai
export OPENAI_API_KEY="<OPENAI_API_KEY>"

准备训练数据

JSONL 格式数据

{"prompt":"兑换码怎么兑换","completion":"校园界面点击右下角【个人信息】-【兑换码】内输入兑换码进行兑换"}
{"prompt":"如何关闭音效","completion":"校园界面点击右下角【个人信息】内进行音效设置"}
{"prompt":"怎么查看自己的角色名角色ID","completion":"校园界面点击右下角点击个人信息可以查看到自己的角色以及下方的ID"}
...

验证、建议、重新格式化数据

╰─ openai tools fine_tunes.prepare_data -f FAQ.jsonl                                                                                                                ─╯
Analyzing...

- Your file contains 138 prompt-completion pairs
- More than a third of your `prompt` column/key is uppercase. Uppercase prompts tends to perform worse than a mixture of case encountered in normal language. We recommend to lower case the data if that makes sense in your domain. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details
- More than a third of your `completion` column/key is uppercase. Uppercase completions tends to perform worse than a mixture of case encountered in normal language. We recommend to lower case the data if that makes sense in your domain. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details
- Your data does not contain a common separator at the end of your prompts. Having a separator string appended to the end of the prompt makes it clearer to the fine-tuned model where the completion should begin. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples. If you intend to do open-ended generation, then you should leave the prompts empty
- Your data does not contain a common ending at the end of your completions. Having a common ending string appended to the end of the completion makes it clearer to the fine-tuned model where the completion should end. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples.
- The completion should start with a whitespace character (` `). This tends to produce better results due to the tokenization we use. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details

Based on the analysis we will perform the following actions:
- [Recommended] Lowercase all your data in column/key `prompt` [Y/n]: y
- [Recommended] Lowercase all your data in column/key `completion` [Y/n]: y
- [Recommended] Add a suffix separator ` ->` to all prompts [Y/n]: y
- [Recommended] Add a suffix ending `\n` to all completions [Y/n]: y
- [Recommended] Add a whitespace character to the beginning of the completion [Y/n]: y


Your data will be written to a new JSONL file. Proceed [Y/n]: y

Wrote modified file to `FAQ_prepared.jsonl`
Feel free to take a look!

Now use that file when fine-tuning:
> openai api fine_tunes.create -t "FAQ_prepared.jsonl"

After you’ve fine-tuned a model, remember that your prompt has to end with the indicator string ` ->` for the model to start generating completions, rather than continuing with the prompt. Make sure to include `stop=["\n"]` so that the generated texts ends at the expected place.
Once your model starts training, it'll approximately take 4.34 minutes to train a `curie` model, and less for `ada` and `babbage`. Queue will approximately take half an hour per job ahead of you.

格式化后数据

{"prompt":"兑换码怎么兑换 ->","completion":" 校园界面点击右下角【个人信息】-【兑换码】内输入兑换码进行兑换\n"}
{"prompt":"如何关闭音效 ->","completion":" 校园界面点击右下角【个人信息】内进行音效设置\n"}
{"prompt":"怎么查看自己的角色名角色id ->","completion":" 校园界面点击右下角点击个人信息可以查看到自己的角色以及下方的id\n"}
...

创建微调模型(ada、babbage、curie、davinci)

╰─ openai api fine_tunes.create -t FAQ_prepared.jsonl -m davinci --suffix "faq"                                                                                     ─╯
Found potentially duplicated files with name 'FAQ_prepared.jsonl', purpose 'fine-tune' and size 18176 bytes
file-CZwRutKW7BAX1uqn2sWfUU0K
file-FtggkvHGwhMw5sTFzbsHqgne
file-frKnGrFLhW300pIk6G9jTwiY
Enter file ID to reuse an already uploaded file, or an empty string to upload this file anyway: 
Upload progress: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████| 18.2k/18.2k [00:00<00:00, 6.84Mit/s]
Uploaded file from FAQ_prepared.jsonl: file-l9PPcrSY7Q497AYLr86vunOU
Created fine-tune: ft-EMGUVyjdwCMcUV1JNyreGW1j
Streaming events until fine-tuning is complete...

(Ctrl-C will interrupt the stream, but not cancel the fine-tune)
[2023-03-16 17:06:12] Created fine-tune: ft-EMGUVyjdwCMcUV1JNyreGW1j

Stream interrupted (client disconnected).
To resume the stream, run:

  openai api fine_tunes.follow -i ft-EMGUVyjdwCMcUV1JNyreGW1j

开始进行微调工作后,可能需要一些时间才能完成。你的工作可能会在 OpenAI 系统上其他工作之后排队,根据模型和数据集大小训练我们的模型可能需要几分钟或数小时。如果事件流出于任何原因中断,则可以通过运行以下命令来恢复:

训练未完成

╰─ openai api fine_tunes.follow -i ft-EMGUVyjdwCMcUV1JNyreGW1j                                                                                                      ─╯
[2023-03-16 17:06:12] Created fine-tune: ft-EMGUVyjdwCMcUV1JNyreGW1j
[2023-03-16 17:10:47] Fine-tune costs $1.23
[2023-03-16 17:10:48] Fine-tune enqueued. Queue number: 25
[2023-03-16 17:11:55] Fine-tune is in the queue. Queue number: 24
[2023-03-16 17:11:59] Fine-tune is in the queue. Queue number: 23
[2023-03-16 17:13:13] Fine-tune is in the queue. Queue number: 22

Stream interrupted (client disconnected).
To resume the stream, run:

  openai api fine_tunes.follow -i ft-EMGUVyjdwCMcUV1JNyreGW1j

训练已完成

╰─ openai api fine_tunes.follow -i ft-EMGUVyjdwCMcUV1JNyreGW1j                                                                                                      ─╯
[2023-03-16 17:06:12] Created fine-tune: ft-EMGUVyjdwCMcUV1JNyreGW1j
[2023-03-16 17:10:47] Fine-tune costs $1.23
[2023-03-16 17:10:48] Fine-tune enqueued. Queue number: 25
[2023-03-16 17:11:55] Fine-tune is in the queue. Queue number: 24
[2023-03-16 17:11:59] Fine-tune is in the queue. Queue number: 23
[2023-03-16 17:13:13] Fine-tune is in the queue. Queue number: 22
[2023-03-16 17:14:50] Fine-tune is in the queue. Queue number: 21
[2023-03-16 17:15:20] Fine-tune is in the queue. Queue number: 20
[2023-03-16 17:16:02] Fine-tune is in the queue. Queue number: 19
[2023-03-16 17:17:43] Fine-tune is in the queue. Queue number: 18
[2023-03-16 17:18:09] Fine-tune is in the queue. Queue number: 17
[2023-03-16 17:18:59] Fine-tune is in the queue. Queue number: 16
[2023-03-16 17:19:41] Fine-tune is in the queue. Queue number: 15
[2023-03-16 17:20:41] Fine-tune is in the queue. Queue number: 14
[2023-03-16 17:21:07] Fine-tune is in the queue. Queue number: 13
[2023-03-16 17:22:59] Fine-tune is in the queue. Queue number: 12
[2023-03-16 17:24:22] Fine-tune is in the queue. Queue number: 11
[2023-03-16 17:24:27] Fine-tune is in the queue. Queue number: 10
[2023-03-16 17:24:30] Fine-tune is in the queue. Queue number: 9
[2023-03-16 17:24:42] Fine-tune is in the queue. Queue number: 8
[2023-03-16 17:25:16] Fine-tune is in the queue. Queue number: 7
[2023-03-16 17:26:18] Fine-tune is in the queue. Queue number: 6
[2023-03-16 17:28:01] Fine-tune is in the queue. Queue number: 5
[2023-03-16 17:28:14] Fine-tune is in the queue. Queue number: 4
[2023-03-16 17:29:53] Fine-tune is in the queue. Queue number: 3
[2023-03-16 17:31:18] Fine-tune is in the queue. Queue number: 2
[2023-03-16 17:33:41] Fine-tune is in the queue. Queue number: 1
[2023-03-16 17:36:28] Fine-tune is in the queue. Queue number: 0
[2023-03-16 17:36:32] Fine-tune started
[2023-03-16 17:39:16] Completed epoch 1/4
[2023-03-16 17:39:59] Completed epoch 2/4
[2023-03-16 17:40:43] Completed epoch 3/4
[2023-03-16 17:41:26] Completed epoch 4/4
[2023-03-16 17:41:59] Uploaded model: davinci:ft-personal:faq-2023-03-16-09-41-59
[2023-03-16 17:42:00] Uploaded result file: file-TjB8Xgm0mj67bqNZkcNIWR9b
[2023-03-16 17:42:00] Fine-tune succeeded

Job complete! Status: succeeded 🎉
Try out your fine-tuned model:

openai api completions.create -m davinci:ft-personal:faq-2023-03-16-09-41-59 -p <YOUR_PROMPT>

其他微调模型操作

# 跟踪微调模型 job 状态
openai api fine_tunes.follow -i <YOUR_FINE_TUNE_JOB_ID>
# 列出所有微调模型
openai api fine_tunes.list
# 获取微调模型 job 信息
openai api fine_tunes.get -i <YOUR_FINE_TUNE_JOB_ID>
# 获取微调模型 job
openai api fine_tunes.cancel -i <YOUR_FINE_TUNE_JOB_ID>

使用微调模型

╰─ openai api completions.create -m davinci:ft-personal:faq-2023-03-16-09-41-59 -p '兑换码怎么兑换 ->' -M 100                                                       ─╯
兑换码怎么兑换 -> 校园界面点击右上角【个人信息】,点选【兑换码】内输入兑换码进行兑换

活动解说:和fifacoin俱乐部%                                                                                                                                            

相关连接

原文链接

本作品采用《CC 协议》,转载必须注明作者和本文链接
No practice, no gain in one's wit. 我的 Gitub
《L01 基础入门》
我们将带你从零开发一个项目并部署到线上,本课程教授 Web 开发中专业、实用的技能,如 Git 工作流、Laravel Mix 前端工作流等。
《G01 Go 实战入门》
从零开始带你一步步开发一个 Go 博客项目,让你在最短的时间内学会使用 Go 进行编码。项目结构很大程度上参考了 Laravel。
讨论数量: 2

这是结合业务训练自己的模型吗

2年前 评论
guanguans (楼主) 2年前

讨论应以学习和精进为目的。请勿发布不友善或者负能量的内容,与人为善,比聪明更重要!
未填写
文章
58
粉丝
131
喜欢
991
收藏
1349
排名:45
访问:15.5 万
私信
所有博文
社区赞助商