2.6 整数环
环
整数环Z_m由以下两部分组成:
1.集合Z_m = ( 0,1,2,…,m )
2.两种操作 “ + ” 和 “ x ” ,使得对所有的a, b\in Z_m 有:
a + b\equiv c\ mod\ m, (c\in Z_m)\\ a\times b\equiv d\ mod\ m, (d\in Z_m)
环的重点特性
- 如果环内任何两个数相加或相乘得到的结果始终在环内,那么这个环就是封闭的。
- 加法和乘法是可结合的,
例如对所有的a,b,c\in Z_m, 都有$$a + ( b + c ) = ( a + b )+ c 和 a·( b·c ) = ( a·b )·c
- 加法中存在中性元素 0 ,
使得对每个a\in Z_m都有a + 0\equiv a\ mod\ m
- 环中的任何元素 a 都存在一个负元素 -a ,
使得 a + ( -a )\equiv 0\ mod\ m , 即加法逆元始终存在。
- 乘法中存在中性元素 1 ,
即对每个a\in Z_m, 都有 a\times 1\equiv a\ mod\ m
- 不是所有元素都存在乘法逆元。