# 在 leanku 文章中插入数学公式的方法[含实例]

• 支持数学公式
行内公式也是$$...$$,Katex语法和Latex虽稍有差别，但不是很大
评论区也完美支持就很赞👍
我只想说PHP可能就是世界上最好的编程语言

\begin{aligned}
(\mu(d)\cdot d) \cdot Id(d)
& = \sum_{d|n}(\mu(d)\cdot d)\cdot Id(\frac{n}{d}) \\
& = \sum_{d|n}\mu(d)\\
& = [n=1]
\end{aligned}

x \in \mathbb{R}\setminus\mathbb{Q}

\begin{aligned}
V^*(s) &= \max_a \Big( \underbrace{r(s, a) + \gamma V^(s’)}_{=Q^(s, a)} \Big)
\end{aligned}

f(n) = \begin{cases} \dfrac{n}{2}, &\text{if } n \text { is even} \\ 3n+1, &\text{if } n \text{ is odd} \end{cases}

\begin{aligned}
V^*(s) &= \max_a \Big( \underbrace{r(s, a) + \gamma V^(s’)}_{=Q^(s, a)} \Big)
\end{aligned}

g(1)S(n)=\sum\limits_{i=1}^n(f\cdot g)(i)-\sum\limits_{i=2}^ng(i)S(\lfloor\dfrac{n}{i}\rfloor)

f(x) = \displaystyle \int_{-\infty}^\infty
\hat f(\xi)\ e^{2 \pi i \xi x}
\ d\xi

\displaystyle x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}

{\color{Blue}x^2}+{\color{Orange}2x}-{\color{OliveGreen}1}

c = \pm\sqrt{a^2 + b^2}

\alpha = \sqrt{1-e^2}

(\sqrt{3x-1}+(1+x)^2)

\sin(\alpha)^{\theta}=\sum\limits_{i=0}^{n}(x^i + \cos(f))

\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

f(x) = \displaystyle \int_{-\infty}^\infty\hat f(\xi),e^{2 \pi i \xi x},d\xi

\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }

\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)

\frac{1}{2}=0.5

\dfrac{k}{k-1} = 0.5

\dbinom{n}{k} \binom{n}{k}

\displaystyle \oint_C x^3, dx + 4y^2, dy

\displaystyle \bigcap_1^n p \bigcup_1^k p

e^{i \pi} + 1 = 0

\displaystyle \left ( \frac{1}{2} \right )

\textstyle \displaystyle \sum_{k=1}^N k^2

\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n

\displaystyle \binom{n}{k}

\displaystyle \sum_{k=1}^N k^2

\textstyle \sum_{k=1}^N k^2

\displaystyle \prod_{i=1}^N x_i

\textstyle \prod_{i=1}^N x_i

\displaystyle \coprod_{i=1}^N x_i

\textstyle \coprod_{i=1}^N x_i

\displaystyle \int_{1}^{3}\frac{e^3/x}{x^2}, dx

\displaystyle \int_C x^3, dx + 4y^2, dy

{}_1^2!\Omega_3^4

a^x=y

《L01 基础入门》

《L04 微信小程序从零到发布》

a^x=y

5个月前 评论

5个月前 评论

5个月前 评论

10

0

2

1