linux系统下poll和epoll内核源代码剖析

poll和epoll的使用应该不用再多说了。当fd很多时,使用epoll比poll效率更高。我们通过内核源码分析来看看到底是为什么。

poll剖析poll系统调用:

int poll(struct pollfd *fds, nfds_t nfds, int timeout);

对应的实现代码为:

[fs/select.c -->sys_poll]
 asmlinkage long sys_poll(struct pollfd __user * ufds, unsigned int nfds, long timeout)
{
 struct poll_wqueues table;
int fdcount, err;
 unsigned int i;
struct poll_list *head;
struct poll_list *walk;

/* Do a sanity check on nfds ... */ /* 用户给的nfds数不可以超过一个struct file结构支持
的最大fd数(默认是256)*/
 if (nfds > current->files->max_fdset && nfds > OPEN_MAX)
 return -EINVAL;

 if (timeout) {
 /* Careful about overflow in the intermediate values */
 if ((unsigned long) timeout < MAX_SCHEDULE_TIMEOUT / HZ)
timeout = (unsigned long)(timeout*HZ+999)/1000+1;
 else /* Negative or overflow */
 timeout = MAX_SCHEDULE_TIMEOUT;
 }

 poll_initwait(&table);

其中poll_initwait较为关键,从字面上看,应该是初始化变量table,注意此处table在整个执行poll的过程中是很关键的变量。而struct poll_table其实就只包含了一个函数指针:

[fs/poll.h]
 /*
 * structures and helpers for f_op->poll implementations
 */
 typedef void (*poll_queue_proc)(struct file *, wait_queue_head_t *, struct
poll_table_struct *);

 typedef struct poll_table_struct {
poll_queue_proc qproc;
 } 
poll_table;

现在我们来看看poll_initwait到底在做些什么

[fs/select.c]
 void __pollwait(struct file *filp, wait_queue_head_t *wait_address, poll_table *p);

 void poll_initwait(struct poll_wqueues *pwq)
 {
 &(pwq->pt)->qproc = __pollwait; /*此行已经被我“翻译”了,方便观看*/
pwq->error = 0;
 pwq->table = NULL;
 }

需要C/C++ Linux服务器架构师学习资料加群812855908(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

linux系统下poll和epoll内核源代码剖析

很明显,poll_initwait的主要动作就是把table变量的成员poll_table对应的回调函数置pollwait。这个pollwait不仅是poll系统调用需要,select系统调用也一样是用这个pollwait,说白了,这是个操作系统的异步操作的“御用”回调函数。当然了,epoll没有用这个,它另外新增了一个回调函数,以达到其高效运转的目的,这是后话,暂且不表。我们先不讨论pollwait的具体实现,还是继续看sys_poll:

[fs/select.c -->sys_poll]
 head = NULL;
 walk = NULL;
 i = nfds;
 err = -ENOMEM;
while(i!=0) {
 struct poll_list *pp;
 pp = kmalloc(sizeof(struct poll_list)+
 sizeof(struct pollfd)*
 (i>POLLFD_PER_PAGE?POLLFD_PER_PAGE:i),
 GFP_KERNEL);
 if(pp==NULL)
 goto out_fds;
 pp->next=NULL;
pp->len = (i>POLLFD_PER_PAGE?POLLFD_PER_PAGE:i);
 if (head == NULL)
 head = pp;
 else
 walk->next = pp;

walk = pp;
if (copy_from_user(pp->entries, ufds + nfds-i,
 sizeof(struct pollfd)*pp->len)) {
 err = -EFAULT;
 goto out_fds;
 }
 i -= pp->len;
 }
fdcount = do_poll(nfds, head, &table, timeout);

这一大堆代码就是建立一个链表,每个链表的节点是一个page大小(通常是4k),这链表节点由一个指向struct poll_list的指针掌控,而众多的struct pollfd就通过struct_list的entries成员访问。上面的循环就是把用户态的struct pollfd拷进这些entries里。通常用户程序的poll调用就监控几个fd,所以上面这个链表通常也就只需要一个节点,即操作系统的一页。但是,当用户传入的fd很多时,由于poll系统调用每次都要把所有struct pollfd拷进内核,所以参数传递和页分配此时就成了poll系统调用的性能瓶颈。最后一句do_poll,我们跟进去:

[fs/select.c-->sys_poll()-->do_poll()]
 static void do_pollfd(unsigned int num, struct pollfd * fdpage,
 poll_table ** pwait, int *count)
 {
 int i;

 for (i = 0; i < num; i++) {
 int fd;
 unsigned int mask;
 struct pollfd *fdp;

 mask = 0;
 fdp = fdpage+i;
 fd = fdp->fd;
 if (fd >= 0) {
 struct file * file = fget(fd);
 mask = POLLNVAL;
 if (file != NULL) {
 mask = DEFAULT_POLLMASK;
 if (file->f_op && file->f_op->poll)
 mask = file->f_op->poll(file, *pwait);
 mask &= fdp->events | POLLERR | POLLHUP;
fput(file);
 }
 if (mask) {
 *pwait = NULL;
 (*count)++;
 }
}
 fdp->revents = mask;
 }
 }

 static int do_poll(unsigned int nfds, struct poll_list *list,
 struct poll_wqueues *wait, long timeout)
 {
 int count = 0;
 poll_table* pt = &wait->pt;

 if (!timeout)
 pt = NULL;

 for (;;) {
 struct poll_list *walk;
set_current_state(TASK_INTERRUPTIBLE);
 walk = list;
 while(walk != NULL) {
 do_pollfd( walk->len, walk->entries, &pt, &count);
walk = walk->next;
}
 pt = NULL;
if (count || !timeout || signal_pending(current))
break;
count = wait->error;
 if (count)
 break;
timeout = schedule_timeout(timeout); /* 让current挂起,别的进程跑,timeout到了
以后再回来运行current*/
}
 __set_current_state(TASK_RUNNING);
return count;
 }

注意set_current_state和signal_pending,它们两句保障了当用户程序在调用poll后挂起时,发信号可以让程序迅速推出poll调用,而通常的系统调用是不会被信号打断的。
纵览do_poll函数,主要是在循环内等待,直到count大于0才跳出循环,而count主要是靠do_pollfd函数处理。注意这段代码:

while(walk != NULL) {
 do_pollfd( walk->len, walk->entries, &pt, &count);
 walk = walk->next;
 }

当用户传入的fd很多时(比如1000个),对do_pollfd就会调用很多次,poll效率瓶颈的另一原因就在这里。do_pollfd就是针对每个传进来的fd,调用它们各自对应的poll函数,简化一下调用过程,如下:

struct file* file = fget(fd);
file->f_op->poll(file, &(table->pt));

如果fd对应的是某个socket,do_pollfd调用的就是网络设备驱动实现的poll;如果fd对应的是某个ext3文件系统上的一个打开文件,那do_pollfd调用的就是ext3文件系统驱动实现的poll。一句话,这个file->f_op->poll是设备驱动程序实现的,那设备驱动程序的poll实现通常又是什么样子呢?其实,设备驱动程序的标准实现是:调用poll_wait,即以设备自己的等待队列为参数(通常设备都有自己的等待队列,不然一个不支持异步操作的设备会让人很郁闷)调用struct poll_table的回调函数。作为驱动程序的代表,我们看看socket在使用tcp时的代码:

[net/ipv4/tcp.c-->tcp_poll]
unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
{
 unsigned int mask;
 struct sock *sk = sock->sk;
struct tcp_opt *tp = tcp_sk(sk);

 poll_wait(file, sk->sk_sleep, wait);

代码就看这些,剩下的无非就是判断状态、返回状态值,tcp_poll的核心实现就是poll_wait,而
poll_wait就是调用struct poll_table对应的回调函数,那poll系统调用对应的回调函数就是__poll_wait,所以这里几乎就可以把tcp_poll理解为一个语句:

__poll_wait(file, sk->sk_sleep, wait);

由此也可以看出,每个socket自己都带有一个等待队列sk_sleep,所以上面我们所说的“设备的等待队列”其实不止一个。这时候我们再看看__poll_wait的实现:

[fs/select.c-->__poll_wait()]
 void __pollwait(struct file *filp, wait_queue_head_t *wait_address, poll_table *_p)
{
 struct poll_wqueues *p = container_of(_p, struct poll_wqueues, pt);
 struct poll_table_page *table = p->table;

 if (!table || POLL_TABLE_FULL(table)) {
 struct poll_table_page *new_table;

 new_table = (struct poll_table_page *) __get_free_page(GFP_KERNEL);
 if (!new_table) {
 p->error = -ENOMEM;
 __set_current_state(TASK_RUNNING);
 return;
}
 new_table->entry = new_table->entries;
 new_table->next = table;
 p->table = new_table;
 table = new_table;
 }

 /* Add a new entry */
 {
 struct poll_table_entry * entry = table->entry;
 table->entry = entry+1;
get_file(filp);
 entry->filp = filp;
entry->wait_address = wait_address;
 init_waitqueue_entry(&entry->wait, current);
 add_wait_queue(wait_address,&entry->wait);
 }
}

linux系统下poll和epoll内核源代码剖析

poll_wait的作用就是创建了上图所示的数据结构(一次poll_wait即一次设备poll调用只创建一个poll_table_entry),并通过struct poll_table_entry的wait成员,把current挂在了设备的等待队列
上,此处的等待队列是wait_address,对应tcp_poll里的sk->sk_sleep。现在我们可以回顾一下poll系统调用的原理了:先注册回调函数__poll_wait,再初始化table变量(类型为struct poll_wqueues),接着拷贝用户传入的struct pollfd(其实主要是fd),然后轮流调用所有fd对应的poll(把current挂到各个fd对应的设备等待队列上)。在设备收到一条消息(网络设备)或填写完文件数据(磁盘设备)后,会唤醒设备等待队列上的进程,这时current便被唤醒了。current醒来后离开sys_poll的操作相对简单,这里就不逐行分析了。

epoll

通过上面的分析,poll运行效率的两个瓶颈已经找出,现在的问题是怎么改进。首先,每次poll都要把1000个fd 拷入内核,太不科学了,内核干嘛不自己保存已经拷入的fd呢?答对了,epoll就是自己保存拷入的fd,它的API就已经说明了这一点——不是 epoll_wait的时候才传入fd,而是通过epoll_ctl把所有fd传入内核再一起”wait”,这就省掉了不必要的重复拷贝。其次,在 epoll_wait时,也不是把current轮流的加入fd对应的设备等待队列,而是在设备等待队列醒来时调用一个回调函数(当然,这就需要“唤醒回调”机制),把产生事件的fd归入一个链表,然后返回这个链表上的fd。
epoll剖析
epoll是个module,所以先看看module的入口eventpoll_init

[fs/eventpoll.c-->evetpoll_init()]
 static int __init eventpoll_init(void)
 {
 int error;

 init_MUTEX(&epsem);

 /* Initialize the structure used to perform safe poll wait head wake ups */
 ep_poll_safewake_init(&psw);

 /* Allocates slab cache used to allocate "struct epitem" items */
 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC,
 NULL, NULL);

 /* Allocates slab cache used to allocate "struct eppoll_entry" */
 pwq_cache = kmem_cache_create("eventpoll_pwq",
 sizeof(struct eppoll_entry), 0,
 EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL);

 /*
 * Register the virtual file system that will be the source of inodes
 * for the eventpoll files
 */
 error = register_filesystem(&eventpoll_fs_type);
 if (error)
goto epanic;

/* Mount the above commented virtual file system */
 eventpoll_mnt = kern_mount(&eventpoll_fs_type);
 error = PTR_ERR(eventpoll_mnt);
 if (IS_ERR(eventpoll_mnt))
goto epanic;

DNPRINTK(3, (KERN_INFO "[%p] eventpoll: successfully initialized.\n",
 current));
return 0;

 epanic:
 panic("eventpoll_init() failed\n");
 }

很有趣,这个module在初始化时注册了一个新的文件系统,叫”eventpollfs”(在eventpoll_fs_type结构里),然后挂载此文件系统。另外创建两个内核cache(在内核编程中,如果需要频繁分配小块内存,应该创建kmem_cahe来做“内存池”),分别用于存放struct epitem和eppoll_entry。如果以后要开发新的文件系统,可以参考这段代码。现在想想epoll_create为什么会返回一个新的fd?因为它就是在这个叫做”eventpollfs”的文件系统里创建了一个新文件!如下:

[fs/eventpoll.c-->sys_epoll_create()]
 asmlinkage long sys_epoll_create(int size)
 {
 int error, fd;
 struct inode *inode;
 struct file *file;

 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n",
 current, size));

 /* Sanity check on the size parameter */
 error = -EINVAL;
 if (size <= 0)
 goto eexit_1;

 /*
 * Creates all the items needed to setup an eventpoll file. That is,
* a file structure, and inode and a free file descriptor.
 */
 error = ep_getfd(&fd, &inode, &file);
 if (error)
goto eexit_1;

/* Setup the file internal data structure ( "struct eventpoll" ) */
 error = ep_file_init(file);
 if (error)
 goto eexit_2;

函数很简单,其中ep_getfd看上去是“get”,其实在第一次调用epoll_create时,它是要创建新inode、新的file、新的fd。而ep_file_init则要创建一个struct eventpoll结构,并把它放入file-

private_data,注意,这个private_data后面还要用到的。看到这里,也许有人要问了,为什么epoll的开发者不做一个内核的超级大map把用户要创建的epoll句柄存起来,在epoll_create时返回一个指针?那似乎很直观呀。但是,仔细看看,linux的系统调用有多少是返回指针的?你会发现几乎没有!(特此强调,malloc不是系统调用,malloc调用的brk才是)因为linux做为unix的最杰出的继承人,它遵循了unix的一个巨大优点——一切皆文件,输入输出是文件、socket也
是文件,一切皆文件意味着使用这个操作系统的程序可以非常简单,因为一切都是文件操作而已!(unix还不是完全做到,plan 9才算)。而且使用文件系统有个好处:epoll_create返回的是一个fd,而不是该死的指针,指针如果指错了,你简直没办法判断,而fd则可以通过current->files->fd_array[]找到其真伪。epoll_create好了,该epoll_ctl了,我们略去判断性的代码:

[fs/eventpoll.c-->sys_epoll_ctl()]
 asmlinkage long
 sys_epoll_ctl(int epfd, int op, int fd, struct epoll_event __user *event)
 {
 int error;
 struct file *file, *tfile;
 struct eventpoll *ep;
 struct epitem *epi;
 struct epoll_event epds;
....
 epi = ep_find(ep, tfile, fd);

error = -EINVAL;
switch (op) {
case EPOLL_CTL_ADD:
if (!epi) {
 epds.events |= POLLERR | POLLHUP;
 error = ep_insert(ep, &epds, tfile, fd);
 } else
 error = -EEXIST;
 break;
 case EPOLL_CTL_DEL:
 if (epi)
 error = ep_remove(ep, epi);
else
error = -ENOENT;
 break;
case EPOLL_CTL_MOD:
 if (epi) {
 epds.events |= POLLERR | POLLHUP;
 error = ep_modify(ep, epi, &epds);
 } else
error = -ENOENT;
 break;
}

原来就是在一个大的结构(现在先不管是什么大结构)里先ep_find,如果找到了struct epitem而用户操作是ADD,那么返回-EEXIST;如果是DEL,则ep_remove。如果找不到struct epitem而用户操作是ADD,就ep_insert创建并插入一个。很直白。那这个“大结构”是什么呢?看ep_find的调用方式,ep参数应该是指向这个“大结构”的指针,再看ep = file->private_data,我们才明白,原来这个“大结构”就是那个在epoll_create时创建的struct eventpoll,具体再看看ep_find的实现,发现原来是struct eventpoll的rbr成员(struct rb_root),原来这是一个红黑树的根!而红黑树上挂的都是struct epitem。现在清楚了,一个新创建的epoll文件带有一个struct eventpoll结构,这个结构上再挂一个红黑树,而这个红黑树就是每次epoll_ctl时fd存放的地方!现在数据结构都已经清楚了,我们来看最核心的:

[fs/eventpoll.c-->sys_epoll_wait()]
 asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events,
 int maxevents, int timeout)
 {
 int error;
 struct file *file;
 struct eventpoll *ep;

 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n",
current, epfd, events, maxevents, timeout));

 /* The maximum number of event must be greater than zero */
 if (maxevents <= 0)
 return -EINVAL;

/* Verify that the area passed by the user is writeable */
 if ((error = verify_area(VERIFY_WRITE, events, maxevents * sizeof(struct
epoll_event))))
goto eexit_1;

 /* Get the "struct file *" for the eventpoll file */
 error = -EBADF;
 file = fget(epfd);
 if (!file)
 goto eexit_1;

 /*
 * We have to check that the file structure underneath the fd
 * the user passed to us _is_ an eventpoll file.
 */
error = -EINVAL;
 if (!IS_FILE_EPOLL(file))
 goto eexit_2;

 /*
 * At this point it is safe to assume that the "private_data" contains
 * our own data structure.
 */
 ep = file->private_data;

/* Time to fish for events ... */
 error = ep_poll(ep, events, maxevents, timeout);

 eexit_2:
 fput(file);
eexit_1:
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) =
%d\n",
 current, epfd, events, maxevents, timeout, error));

 return error;
 }

故伎重演,从file->private_data中拿到struct eventpoll,再调用ep_poll

[fs/eventpoll.c-->sys_epoll_wait()->ep_poll()]
 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
 int maxevents, long timeout)
 {
int res, eavail;
unsigned long flags;
 long jtimeout;
 wait_queue_t wait;

 /*
 * Calculate the timeout by checking for the "infinite" value ( -1 )
 * and the overflow condition. The passed timeout is in milliseconds,
 * that why (t * HZ) / 1000.
 */
 jtimeout = timeout == -1 || timeout > (MAX_SCHEDULE_TIMEOUT - 1000) / HZ ?
 MAX_SCHEDULE_TIMEOUT: (timeout * HZ + 999) / 1000;

retry:
 write_lock_irqsave(&ep->lock, flags);

 res = 0;
 if (list_empty(&ep->rdllist)) {
 /*
 * We don't have any available event to return to the caller.
 * We need to sleep here, and we will be wake up by
 * ep_poll_callback() when events will become available.
*/
 init_waitqueue_entry(&wait, current);
 add_wait_queue(&ep->wq, &wait);

 for (;;) {
 /*
 * We don't want to sleep if the ep_poll_callback() sends us
 * a wakeup in between. That's why we set the task state
 * to TASK_INTERRUPTIBLE before doing the checks.
 */
 set_current_state(TASK_INTERRUPTIBLE);
 if (!list_empty(&ep->rdllist) || !jtimeout)
 break;
 if (signal_pending(current)) {
 res = -EINTR;
 break;
 }

 write_unlock_irqrestore(&ep->lock, flags);
 jtimeout = schedule_timeout(jtimeout);
 write_lock_irqsave(&ep->lock, flags);
}
 remove_wait_queue(&ep->wq, &wait);

 set_current_state(TASK_RUNNING);
}

又是一个大循环,不过这个大循环比poll的那个好,因为仔细一看——它居然除了睡觉和判断ep->rdllist是否为空以外,啥也没做!什么也没做当然效率高了,但到底是谁来让ep->rdllist不为空呢?答案是ep_insert时设下的回调函数

[fs/eventpoll.c-->sys_epoll_ctl()-->ep_insert()]
 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
 struct file *tfile, int fd)
 {
 int error, revents, pwake = 0;
 unsigned long flags;
 struct epitem *epi;
struct ep_pqueue epq;

 error = -ENOMEM;
 if (!(epi = EPI_MEM_ALLOC()))
 goto eexit_1;

 /* Item initialization follow here ... */
EP_RB_INITNODE(&epi->rbn);
INIT_LIST_HEAD(&epi->rdllink);
 INIT_LIST_HEAD(&epi->fllink);
 INIT_LIST_HEAD(&epi->txlink);
 INIT_LIST_HEAD(&epi->pwqlist);
 epi->ep = ep;
 EP_SET_FFD(&epi->ffd, tfile, fd);
 epi->event = *event;
 atomic_set(&epi->usecnt, 1);
epi->nwait = 0;

 /* Initialize the poll table using the queue callback */
 epq.epi = epi;
 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);

/*
* Attach the item to the poll hooks and get current event bits.
 * We can safely use the file* here because its usage count has
 * been increased by the caller of this function.
 */
 revents = tfile->f_op->poll(tfile, &epq.pt);

我们注意init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);这一行,其实就是&(epq.pt)->qproc = ep_ptable_queue_proc;紧接着 tfile->f_op->poll(tfile, &epq.pt)其实就是调用被监控文件(epoll里叫“target file”)的poll方法,而这个poll其实就是调用poll_wait(还记得poll_wait吗?每个支持poll的设备驱动程序都要调用的),最后就是调用ep_ptable_queue_proc。这是比较难解的一个调用关系,因为不是语言级的直接调用。ep_insert还把struct epitem放到struct file里的f_ep_links连表里,以方便查找,struct epitem里的fllink就是担负这个使命的。

[fs/eventpoll.c-->ep_ptable_queue_proc()]
 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
poll_table *pt)
 {
 struct epitem *epi = EP_ITEM_FROM_EPQUEUE(pt);
 struct eppoll_entry *pwq;

 if (epi->nwait >= 0 && (pwq = PWQ_MEM_ALLOC())) {
 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
 pwq->whead = whead;
 pwq->base = epi;
 add_wait_queue(whead, &pwq->wait);
list_add_tail(&pwq->llink, &epi->pwqlist);
 epi->nwait++;
 } else {
 /* We have to signal that an error occurred */
epi->nwait = -1;
 }
 }

上面的代码就是ep_insert中要做的最重要的事:创建struct eppoll_entry,设置其唤醒回调函数为
ep_poll_callback,然后加入设备等待队列(注意这里的whead就是上一章所说的每个设备驱动都要带的等待队列)。只有这样,当设备就绪,唤醒等待队列上的等待着时,ep_poll_callback就会被调用。每次调用poll系统调用,操作系统都要把current(当前进程)挂到fd对应的所有设备的等待队列上,可以想象,fd多到上千的时候,这样“挂”法很费事;而每次调用epoll_wait则没有这么罗嗦,epoll只在epoll_ctl时把current挂一遍(这第一遍是免不了的)并给每个fd一个命令“好了就调回调函数”,如果设备有事件了,通过回调函数,会把fd放入rdllist,而每次调用epoll_wait就只是收集rdllist里的fd就可以了——epoll巧妙的利用回调函数,实现了更高效的事件驱动模型。现在我们猜也能猜出来ep_poll_callback会干什么了——肯定是把红黑树上的收到event的epitem(代表每个fd)插入ep->rdllist中,这样,当epoll_wait返回时,rdllist里就都是就绪的fd了!

[fs/eventpoll.c-->ep_poll_callback()]
 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
 {
 int pwake = 0;
 unsigned long flags;
 struct epitem *epi = EP_ITEM_FROM_WAIT(wait);
 struct eventpoll *ep = epi->ep;

 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p
ep=%p\n",
 current, epi->file, epi, ep));

 write_lock_irqsave(&ep->lock, flags);

 /*
 * If the event mask does not contain any poll(2) event, we consider the
 * descriptor to be disabled. This condition is likely the effect of the
 * EPOLLONESHOT bit that disables the descriptor when an event is received,
 * until the next EPOLL_CTL_MOD will be issued.
*/
 if (!(epi->event.events & ~EP_PRIVATE_BITS))
 goto is_disabled;

 /* If this file is already in the ready list we exit soon */
 if (EP_IS_LINKED(&epi->rdllink))
 goto is_linked;

 list_add_tail(&epi->rdllink, &ep->rdllist);

is_linked:
 /*
 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
 * wait list.
 */
 if (waitqueue_active(&ep->wq))
 wake_up(&ep->wq);
 if (waitqueue_active(&ep->poll_wait))
 pwake++;

 is_disabled:
 write_unlock_irqrestore(&ep->lock, flags);

 /* We have to call this outside the lock */
if (pwake)
 ep_poll_safewake(&psw, &ep->poll_wait);

 return 1;
 }

真正重要的只有 list_add_tail(&epi->rdllink, &ep->rdllist);一句,就是把struct epitem放到struct eventpoll的rdllist中去。现在我们可以画出epoll的核心数据结构图了:

linux系统下poll和epoll内核源代码剖析

epoll独有的EPOLLET

EPOLLET是epoll系统调用独有的flag,ET就是Edge Trigger(边缘触发)的意思,具体含义和应用大家可google之。有了EPOLLET,重复的事件就不会总是出来打扰程序的判断,故而常被使用。那EPOLLET的原理是什么呢?epoll把fd都挂上一个回调函数,当fd对应的设备有消息时,就把fd放入rdllist链表,这样epoll_wait只要检查这个rdllist链表就可以知道哪些fd有事件了。我们看看ep_poll的最后几行代码:

[fs/eventpoll.c->ep_poll()]
 /*
 * Try to transfer events to user space. In case we get 0 events and
 * there's still timeout left over, we go trying again in search of
 * more luck.
 */
if (!res && eavail &&
 !(res = ep_events_transfer(ep, events, maxevents)) && jtimeout)
 goto retry;

 return res;
 }

把rdllist里的fd拷到用户空间,这个任务是ep_events_transfer做的:

[fs/eventpoll.c->ep_events_transfer()]
 static int ep_events_transfer(struct eventpoll *ep,
struct epoll_event __user *events, int maxevents)
 {
 int eventcnt = 0;
 struct list_head txlist;

 INIT_LIST_HEAD(&txlist);

 /*
 * We need to lock this because we could be hit by
 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL).
 */
down_read(&ep->sem);

/* Collect/extract ready items */
 if (ep_collect_ready_items(ep, &txlist, maxevents) > 0) {
/* Build result set in userspace */
eventcnt = ep_send_events(ep, &txlist, events);

/* Reinject ready items into the ready list */
ep_reinject_items(ep, &txlist);
 }

up_read(&ep->sem);

 return eventcnt;
}

代码很少,其中ep_collect_ready_items把rdllist里的fd挪到txlist里(挪完后rdllist就空了),接着
ep_send_events把txlist里的fd拷给用户空间,然后ep_reinject_items把一部分fd从txlist里“返还”给
rdllist以便下次还能从rdllist里发现它。其中ep_send_events的实现:

[fs/eventpoll.c->ep_send_events()]
 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist,
 struct epoll_event __user *events)
 {
 int eventcnt = 0;
 unsigned int revents;
 struct list_head *lnk;
 struct epitem *epi;

 /*
 * We can loop without lock because this is a task private list.
 * The test done during the collection loop will guarantee us that
 * another task will not try to collect this file. Also, items
 * cannot vanish during the loop because we are holding "sem".
 */
 list_for_each(lnk, txlist) {
 epi = list_entry(lnk, struct epitem, txlink);

 /*
 * Get the ready file event set. We can safely use the file
 * because we are holding the "sem" in read and this will
 * guarantee that both the file and the item will not vanish.
 */
 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);

 /*
 * Set the return event set for the current file descriptor.
 * Note that only the task task was successfully able to link
 * the item to its "txlist" will write this field.
 */
 epi->revents = revents & epi->event.events;

 if (epi->revents) {
 if (__put_user(epi->revents,
 &events[eventcnt].events) ||
 __put_user(epi->event.data,
 &events[eventcnt].data))
 return -EFAULT;
 if (epi->event.events & EPOLLONESHOT)
 epi->event.events &= EP_PRIVATE_BITS;
 eventcnt++;
 }
 }
 return eventcnt;
}

这个拷贝实现其实没什么可看的,但是请注意revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);这一行,这个poll很狡猾,它把第二个参数置为NULL来调用。我们先看一下设备驱动通常是怎么实现poll的:

static unsigned int scull_p_poll(struct file *filp, poll_table *wait)
{
struct scull_pipe *dev = filp->private_data;
unsigned int mask = 0;
/*
* The buffer is circular; it is considered full
* if "wp" is right behind "rp" and empty if the
* two are equal.
*/
down(&dev->sem);
poll_wait(filp, &dev->inq, wait);
poll_wait(filp, &dev->outq, wait);
if (dev->rp != dev->wp)
mask |= POLLIN | POLLRDNORM; /* readable */
if (spacefree(dev))
mask |= POLLOUT | POLLWRNORM; /* writable */
up(&dev->sem);
return mask;
}

上面这段代码摘自《linux设备驱动程序(第三版)》,绝对经典,设备先要把current(当前进程)挂在inq和outq两个队列上(这个“挂”操作是wait回调函数指针做的),然后等设备来唤醒,唤醒后就能通过mask拿到事件掩码了(注意那个mask参数,它就是负责拿事件掩码的)。那如果wait为NULL,poll_wait会做些什么呢?

[include/linux/poll.h->poll_wait]
 static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address,
poll_table *p)
 {
 if (p && wait_address)
 p->qproc(filp, wait_address, p);
 }

如果poll_table为空,什么也不做。我们倒回ep_send_events,那句标红的poll,实际上就是“我不想休眠,我只想拿到事件掩码”的意思。然后再把拿到的事件掩码拷给用户空间。ep_send_events完成后,就轮到ep_reinject_items了:

[fs/eventpoll.c->ep_reinject_items]
 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist)
 {
 int ricnt = 0, pwake = 0;
 unsigned long flags;
 struct epitem *epi;

 write_lock_irqsave(&ep->lock, flags);

 while (!list_empty(txlist)) {
 epi = list_entry(txlist->next, struct epitem, txlink);

/* Unlink the current item from the transfer list */
 EP_LIST_DEL(&epi->txlink);

/*
* If the item is no more linked to the interest set, we don't
 * have to push it inside the ready list because the following
 * ep_release_epitem() is going to drop it. Also, if the current
 * item is set to have an Edge Triggered behaviour, we don't have
 * to push it back either.
 */
 if (EP_RB_LINKED(&epi->rbn) && !(epi->event.events & EPOLLET) &&
 (epi->revents & epi->event.events) && !EP_IS_LINKED(&epi->rdllink)) {
 list_add_tail(&epi->rdllink, &ep->rdllist);
ricnt++;
 }
 }

 if (ricnt) {
 /*
* Wake up ( if active ) both the eventpoll wait list and the ->poll()
 * wait list.
 */
 if (waitqueue_active(&ep->wq))
 wake_up(&ep->wq);
 if (waitqueue_active(&ep->poll_wait))
 pwake++;
 }
write_unlock_irqrestore(&ep->lock, flags);

 /* We have to call this outside the lock */
 if (pwake)
 ep_poll_safewake(&psw, &ep->poll_wait);
 }

ep_reinject_items把txlist里的一部分fd又放回rdllist,那么,是把哪一部分fd放回去呢?看上面if (EP_RB_LINKED(&epi->rbn) && !(epi->event.events & EPOLLET) &&这个判断——是哪些“没有标上EPOLLET”(标红代码)且“事件被关注”(标蓝代码)的fd被重新放回了rdllist。那么下次epoll_wait当然会又把rdllist里的fd拿来拷给用户了。举个例子。假设一个socket,只是connect,还没有收发数据,那么它的poll事件掩码总是有POLLOUT的(参见上面的驱动示例),每次调用epoll_wait总是返回POLLOUT事件(比较烦),因为它的fd就总是被放回rdllist;假如此时有人往这个socket里写了一大堆数据,造成socket塞住(不可写了),那么(epi->revents & epi->event.events) && !EP_IS_LINKED(&epi->rdllink)) {里的判断就不成立了(没有POLLOUT了),fd不会放回rdllist,epoll_wait将不会再返回用户POLLOUT事件。现在我们给这个socket加上EPOLLET,然后connect,没有收发数据,此时,if (EP_RB_LINKED(&epi->rbn) && !(epi->event.events & EPOLLET) &&判断又不成立了,所以epoll_wait只会返回一次POLLOUT通知给用户(因为此fd不会再回到rdllist了),接下来的epoll_wait都不会有任何事件通知了。

本作品采用《CC 协议》,转载必须注明作者和本文链接
《L05 电商实战》
从零开发一个电商项目,功能包括电商后台、商品 & SKU 管理、购物车、订单管理、支付宝支付、微信支付、订单退款流程、优惠券等
《L02 从零构建论坛系统》
以构建论坛项目 LaraBBS 为线索,展开对 Laravel 框架的全面学习。应用程序架构思路贴近 Laravel 框架的设计哲学。
讨论数量: 0
(= ̄ω ̄=)··· 暂无内容!

讨论应以学习和精进为目的。请勿发布不友善或者负能量的内容,与人为善,比聪明更重要!