问答 / 0 / 1 / 创建于 4年前
f(x)=1−cosx,(−π⩽x⩽π)f(x)=\sqrt{1-\cos x}, \\(-\pi \leqslant x\leqslant\pi)f(x)=1−cosx,(−π⩽x⩽π)
1−cosx=2sin2x2={−2sinx2, −π⩽x<02sinx2, 0⩽x⩽πa0=1π∫−π0(−2sinx2)dx+1π∫0π2sinx2dx=22π∫0πsinx2dx=42π,an=1π∫−π0(−2sinx2)cosnxdx+1n∫0π2sinx2cosnxdx=22π∫0πsinx2cosnxdx=2π∫0π[sin(12+n)x+sin(12−n)x]dx=−42π(4n2−1) (n=1,2,⋯ ),bn=1π∫−π0(−2sinx2)sinnxdx+1π∫−π0(2sinx2)sinnxdx=2π∫−π0sin−x2sin(−nx)d(−x)+2π∫0πsinx2sinnxdx=−2π∫0πsinx2sinnxdx+2π∫0πsinx2sinnxdx=0−−−−−−−in the space of the (−π,π)f(x)=1−cosx=22π−42π∑n=1∞14n2−1cosnx−−−−−−−time of the x=π or x=−πf(π−0)+f(−π+0)2=2+22=2,so in the [−π,π]f(x)=1−cosx=22π−42π∑n=1∞14n2−1cosnx\displaystyle \sqrt{1-\cos x}=\sqrt{2\sin^2\frac{x}{2}}\\{}\\ =\left\{ \begin{aligned} -\sqrt{2}\sin\frac{x}{2},\ -\pi\leqslant x<0\\ \sqrt{2}\sin\frac{x}{2},\ \ \ \ 0\leqslant x\leqslant\pi \end{aligned} \right.\\{}\\ a_0=\frac{1}{\pi}\int_{-\pi}^0\left(-\sqrt{2}\sin\frac{x}{2}\right)dx+\frac{1}{\pi}\int_0^\pi\sqrt{2}\sin\frac{x}{2}dx\\{}\\ =\frac{2\sqrt{2}}{\pi}\int_0^\pi\sin\frac{x}{2}dx=\frac{4\sqrt{2}}{\pi},\\{}\\ a_n=\frac{1}{\pi}\int_{-\pi}^0\left(-\sqrt{2}\sin\frac{x}{2}\right)\cos nxdx+\frac{1}{n}\int_0^\pi\sqrt{2}\sin\frac{x}{2}\cos nxdx\\{}\\ =\frac{2\sqrt{2}}{\pi}\int_0^\pi\sin\frac{x}{2}\cos nxdx\\{}\\ =\frac{\sqrt{2}}{\pi}\int_0^\pi\left[\sin\left(\frac{1}{2}+n\right)x+\sin\left(\frac{1}{2}-n\right)x\right]dx\\{}\\ =-\frac{4\sqrt{2}}{\pi(4n^2-1)}\ \ (n=1,2,\cdots),\\{}\\ b_n=\frac{1}{\pi}\int_{-\pi}^0\left(-\sqrt{2}\sin\frac{x}{2}\right)\sin nxdx+\frac{1}{\pi}\int_{-\pi}^0\left(\sqrt{2}\sin\frac{x}{2}\right)\sin nxdx\\{}\\ =\frac{\sqrt{2}}{\pi}\int_{-\pi}^0\sin\frac{-x}{2}\sin(-nx)d(-x)+\frac{\sqrt{2}}{\pi}\int_0^\pi\sin\frac{x}{2}\sin nxdx\\{}\\ =-\frac{\sqrt{2}}{\pi}\int_0^\pi\sin\frac{x}{2}\sin nxdx+\frac{\sqrt{2}}{\pi}\int_0^\pi\sin\frac{x}{2}\sin nxdx\\{}\\ =0\\{}\\ -------\\{}\\ \mathrm{in\ the\ space\ of\ the}\ (-\pi,\pi)\\{}\\ f(x)=\sqrt{1-\cos x}=\frac{2\sqrt{2}}{\pi}-\frac{4\sqrt{2}}{\pi}\sum_{n=1}^\infty\frac{1}{4n^2-1}\cos nx\\{}\\ -------\\{}\\ \mathrm{time\ of\ the}\ x=\pi\ \mathrm{or}\ x=-\pi\\{}\\ \frac{f(\pi-0)+f(-\pi+0)}{2}=\frac{\sqrt{2}+\sqrt{2}}{2}=\sqrt{2},\\{}\\ \mathrm{so\ in\ the}\ [-\pi,\pi]\\{}\\ f(x)=\sqrt{1-\cos x}=\frac{2\sqrt{2}}{\pi}-\frac{4\sqrt{2}}{\pi}\sum_{n=1}^\infty\frac{1}{4n^2-1}\cos nx1−cosx=2sin22x=⎩⎪⎪⎨⎪⎪⎧−2sin2x, −π⩽x<02sin2x, 0⩽x⩽πa0=π1∫−π0(−2sin2x)dx+π1∫0π2sin2xdx=π22∫0πsin2xdx=π42,an=π1∫−π0(−2sin2x)cosnxdx+n1∫0π2sin2xcosnxdx=π22∫0πsin2xcosnxdx=π2∫0π[sin(21+n)x+sin(21−n)x]dx=−π(4n2−1)42 (n=1,2,⋯),bn=π1∫−π0(−2sin2x)sinnxdx+π1∫−π0(2sin2x)sinnxdx=π2∫−π0sin2−xsin(−nx)d(−x)+π2∫0πsin2xsinnxdx=−π2∫0πsin2xsinnxdx+π2∫0πsin2xsinnxdx=0−−−−−−−in the space of the (−π,π)f(x)=1−cosx=π22−π42n=1∑∞4n2−11cosnx−−−−−−−time of the x=π or x=−π2f(π−0)+f(−π+0)=22+2=2,so in the [−π,π]f(x)=1−cosx=π22−π42n=1∑∞4n2−11cosnx
我要举报该,理由是:
推荐文章: