数据结构和算法-go 实现堆
一种特殊的树,满足下面两个条件:
1.堆总是一棵完全二叉树(除了最后一层,其他都是满节点,最后一层先排左节点)
2.堆中某个节点的值总是大于等于(小于等于)其所有子节点的值。如果是大于等于情况就称为大顶堆,小于等于情况就是小顶堆。
完全二叉树适合用数组存储,因为下标为i的元素,它的左子树下标为2i,右子树下标为2i+1。父节点就是i/2的overflow。
建堆
堆是用数组存储的,而且0下标不存,从1开始存储,建堆就是在原地通过交换位置,达到建堆的目的。完全二叉树我们知道,如果最后一个元素的下标为n,则1到n/2是非叶子节点,需要自上而下的堆化(和子节点比较),n/2 +1 到n是叶子节点,不需要堆化。
插入一个元素
先插入的元素放到堆最后,然后和父节点比较,如果大于父节点,就交换位置,然后再和父节点比较,直到把这个元素放到正确的层。这种也叫自下而上的堆化。
删除一个元素
假如删除大顶堆的,删除最大的元素,然后再它的子节点找到第二大元素,放到堆顶。然后再第二大元素下一层寻找
堆排序
比如有n个数据,我们先把数据建堆,生成一个大顶堆,元素个数为n
获取堆顶数据(也就是最大元素),删除堆顶,并且把最后一个元素放到堆顶,然后堆化成(n-1)大顶堆,堆化的时间复杂度为LogN,底数是2
重复获取堆顶,堆化成(n-2)大顶堆。我们获取的数据就是从大到小的顺序。
堆的应用
应用1:优先级队列
合并n个有序小文件 把n个有序的小文件的第一个元素取出,放入堆中,取出堆顶到大文件,然后再从小文件中取出一个加入到堆,这样就把小文件的元素合并到大文件中了。
应用2:用堆求 Top K(就是从一堆数据中找出前k大的数据)
a. 针对静态数据(数据不变) 建立大小为K的小顶堆,遍历数组,数组元素与堆顶比较,比堆顶大,就把堆顶删除,并插入该元素到堆 b. 针对动态数据(数据不断插入更新的) 在动态数据插入的时候就与堆顶比较,看是否入堆,始终维护这个堆,需要的时候直接返回,最坏O(n*lgK)
应用3:海量关键词搜索记录,求搜索次数topK
a.先用hashTable去重,并累加搜索次数
b.再建立大小为K的小顶堆,遍历散列表,次数大于堆顶的,顶替堆顶入堆(就是应用2的解法)
散列表很大时,超出内存要求
建立n个空文件,对搜索关键词求哈希值,哈希值对n取模,得到该关键词被分到的文件号(0到n-1)
对每个文件,利用散列和堆,分别求出topK,然后把n个topK(比如10个Top 20,200很小了吧)放在一起,出现次数最多的K(20)个关键词就是这海量数据里搜索最频繁的。
go实现大顶堆
type heap struct{
m []int
len int //堆中有多少元素
}
func main() {
m := []int{0,9,3,6,2,1,7} //第0个下标不放目标元素
h := buildHeap(m) //建堆,返回一个heap结构
h.Push(50)
h.Pop()
fmt.Println(h.m)
}
/**
建堆,就是在原切片上操作,形成堆结构
只要按照顺序,把切片下标为n/2到1的节点依次堆化,最后就会把整个切片堆化
*/
func buildHeap(m []int) *heap{
n := len(m)-1
for i:=n/2; i>0; i-- {
heapf(m, n, i)
}
return &heap{m,n}
}
func (h *heap)Push(data int) {
h.len++
h.m = append(h.m, data)//向切片尾部插入数据(推断出父节点下标为i/2)
i := h.len
for i/2 >0 && h.m[i/2]<h.m[i] { //自下而上的堆化
h.m[i/2], h.m[i] = h.m[i], h.m[i/2]
i = i/2
}
}
/**
弹出堆顶元素,为防止出现数组空洞,需要把最后一个元素放入堆顶,然后从上到下堆化
*/
func (h *heap)Pop() int{
if h.len < 1 {
return -1
}
out := h.m[1]
h.m[1] = h.m[h.len] //把最后一个元素给堆顶
h.len--
//对堆顶节点进行堆化即可
heapf(h.m, h.len, 1)
return out
}
//对下标为i的节点进行堆化, n表示堆的最后一个节点下标
//2i,2i+1
func heapf(m []int, n,i int) {
for {
maxPos := i
if 2*i<= n && m[2*i] > m[i] {
maxPos = 2*i
}
if 2*i+1 <=n && m[2*i+1] > m[maxPos] {
maxPos = 2*i + 1
}
if maxPos == i { //如果i节点位置正确,则退出
break
}
m[i],m[maxPos] = m[maxPos],m[i]
i = maxPos
}
}
本作品采用《CC 协议》,转载必须注明作者和本文链接
推荐文章: